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Abstract
Members of Brassica seed oil are important sources of nutritionally superior edible oil. There are no comprehensive 
reports on complete lipidomic profile of these oilseed crops. In this study, the lipidomic profiling of edible oil from 7 
different cultivated species of Brassica seed oils was performed by shotgun approach using electrospray High Resolu-
tion Time of Flight-Mass Spectrometry (ESI-ToF-MS). The mass spectrum under positive polarity revealed 1098 lipids 
under different lipid classes including sphingolipids, phospholipids and different storage lipids. Under negative polarity, 
70 lipids including free fatty acids (FFA), cardiolipins and phospholipids were detected. Erucic acid in FFA form was 
found to be most abundant in both Yellow and Brown sarson. Brassica napus contains almost all forms of cardiolipins 
(CL). Out of 26 different species of cardiolipins detected in negative ion mode, CL 56:1 (FA 18:1) and CL 56:1 (FA 22:1) 
were present only in brown sarson. Similarly, CL 56:2 (FA 18:2) and CL 56:1 (FA 22:1) were present only in Yellow and 
Brown sarson. These findings enhance our understanding of the nutritional diversity in Brassica seed oils, emphasizing 
the significance of lipidomic analysis for elucidating the molecular composition of edible oils.
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Introduction

Rapeseed-mustard oil is the third most consumed edible 
oil in the world after soybean and palm oil (Shen et al. 
2023). Brassica seed oil is a collective term used for related 
oil yielding species belonging to the family Brassicaceae. 
The major crops are Brassica napus L. (rapeseed), Brassica 
juncea L. (Indian mustard), Brassica rapa L. var. Yellow 
sarson, Brassica rapa L. var. Toria, Brassica rapa L. var. 
Brown sarson, Brassica carinata A. Br. (Ethiopian mus-
tard) and Eruca sativa Mill. (taramira).

Rapeseed-mustard oil is one of the most preferred and 
healthy edible oil as they are low in saturated fatty acids. 
They are preferred also because they are high in essential 
fatty acids which are nothing but polyunsaturated fatty 
acids (PUFAs) belonging to ω3 and ω6 families. The sig-
nificance of ω3 fatty acids in human health is well-estab-
lished through epidemiological studies linking an ω3-rich 
diet to the prevention of diseases like cardiovascular dis-
eases and myocardial infarction (VonSchacky and Harris 
2007). Research indicates three primary effects of ω3 fatty 
acids on cardiovascular health: anti-arrhythmic (Leray et 
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al. 2001), hypolipidemic (Buchner et al. 2002), and anti-
thrombotic (Albert et al. 2002), leading to reduced arte-
riosclerosis. There are reports that indicate that omega-3 
oils offer health advantages in various other domains, in-
cluding premature infant health (Carlson 1999), asthma 
(Broughton et al. 1997), bipolar and depressive disorders 
(Calabrese et al. 1999), as well as conditions like dysmen-
orrhea and diabetes (Connor 2000). Alpha-linolenic acid 
(ALA) is one of the major omega-3 fatty acids that is pres-
ent abundantly in flaxseed and found in small amounts 
in hemp, walnut, soybean, and canola oil (Hunter 1990).

Linoleic acid serves as the primary ω6 polyunsaturated 
fatty acid (PUFA), while arachidonic acid, a longer-chain 
ω6 PUFA, constitutes approximately 2% of total PUFA. 
Arachidonic acid is derived from the metabolism of lin-
oleic acid and acts as the precursor for various reactive 
oxygenated metabolites. Linoleic acid plays a crucial role 
in maintaining the structural integrity of the skin and sup-
porting barrier function, as it is an essential component of 
ceramides (Rabionet et al. 2014). Moderate intake of lin-
oleic acid, when used as a partial replacement for saturated 
fatty acids, has been shown to lower both total cholesterol 
and low-density lipoprotein (LDL)-cholesterol concentra-
tions in the blood (Froyen et al. 2020). Arachidonic acid 
can constitute up to 25% of the fatty acids in phospho-
lipids found in skeletal muscles, brain, liver, platelets, and 
immune cells (Calder 2007). Beyond their role in regu-
lating immunity and inflammation (Calder 2020), eicosa-
noids derived from arachidonic acid are also involved in 
the regulation of platelet aggregation, hemostasis, throm-
bosis, and vascular tone (Crescente et al. 2019).

Brassica seed oils are also rich in phytosterols (1–1.5 %), 
tocopherols and β-carotene (Ghazani and Marangoni 
2013). Nutritional profiling of these crops has been mostly 
concentrated on either fatty acid profile or other targeted 
compounds. There are no comprehensive reports on the 
complete profiling of these oils. Hence a complete lipid-
omic profiling of these oils will be helpful in identifying 
the best sources for nutritionally beneficial mustard oil. 
Although these species are related to each other, consider-
able variation can be observed in their biochemical reper-
toire and nutritional profile. For example, the canola type 
rapeseed which is Brassica napus genotype with low erucic 
acid content (less than 2 %) are more preferred as erucic 
acid has been considered antinutritional in nature as it is 
said to cause myocardial lipidosis mostly in rodents fed 
with high erucic acid diet (Kramer et al. 1992; Pasini et 
al., 1992; Badawy et al. 1994). However this effect is tran-
sient and reversible even after prolonged intake. Especially 
in humans erucic acid induced lipidosis has not been de-
scribed (Knutsen et al. 2016). There are reports that di-
etary erucic acid therapy was effective in lowering plasma 
C26:0 to normal in adrenoleukodystrophy (ALD) patients, 
and that this therapy might prevent further demyelination 
in some mildly affected patients (Asano et al. 1994; Cappa 
et al. 2012). Huge variation (0–52 %) in erucic acid content 
can be observed in rapeseed-mustard oils. Same is the case 
with saturated fatty acids (5–7 %) and polyunsaturated fat-

ty acids with 7–10 % α-linolenic acid and 17–21 % linole-
ic acid (Pellet et al. 2008; El-Beltagi and Mohamed 2010). 
Nuclear Magnetic Resonance (NMR) metabolomic studies 
of B. rapa and B. napus reveal that PUFA content is more 
in B. rapa (Kortesniemi et al. 2015). The present study was 
intended to see the variation in the lipid composition of 
different cultivated species of rapeseed-mustard.

A number of methods have been utilized in rapeseed-mus-
tard species for metabolomic and lipidomic studies. Non-tar-
geted metabolomic analysis via Ultra Performance Liquid 
Chromatography-Quadrupole Time of Flight Mass Spec-
trometry (UPLC–QTOF–MS) has been utilized in B. napus 
(Farag et al. 2013). 1H NMR metabolomics was used in B. 
rapa and B. napus to see the differences in major lipids and 
minor metabolites between the two species (Kortesniemi et 
al. 2015). Variation in fatty acid composition among different 
genotypes of B. napus has been studied using Gas chroma-
tography-mass spectrometry (GC-MS) (El-Beltagi and Mo-
hamed 2010). Low and high erucic lines were successfully 
identified using 1H NMR metabolomics in B. napus (Han et 
al. 2016). Zheng et al. 2017 have done the glycerolipid profil-
ing of yellow sarson by using UPLC coupled to triple time-of-
flight mass spectrometry (UPLC-Triple-TOF-MS).

Analysis of lipids using mass spectrometry plays crucial 
role in the field of lipidomics (McDonald et al. 2016). Di-
rect infusion-based shotgun approach is suitable for high 
throughput analysis of lipids as it provides direct MS scans 
and or specific precursor ion scans (PIS), neutral loss scans 
(NLS), selected ion monitoring (SIM) or data dependent MS 
scans for detecting lipid species (Xie et al. 2019). The most 
commonly used method for MS nowadays uses the atmo-
spheric pressure chemical ionization (APCI) source either 
without separation or coupled with liquid chromatography 
especially for less polar lipid classes (Holcapek et al. 2018).

Metabolite profiling with reference to flavors have 
been done using gas chromatography-mass spectrometry 
(GC-MS), gas chromatography-olfactory (GC-O), and 
sensory analysis in unheated delicate fragrance rapeseed 
oil (DFRO), refined rapeseed oil (RRO), unheated strong 
fragrance rapeseed oil (SFRO) and umami fragrance rape-
seed oil (UFRO) by Guo et al. (2023).

Raza et al. (2021) have discerned 31 differentially ac-
cumulated metabolites (DAMs) in rapeseed (Brassica 
napus), using metabolome analysis, when comparing 
cold-tolerant and cold-sensitive varieties. Liquid Chro-
matography- Mass Spectrometry (LC-MS/MS) analyses 
were carried out by them utilizing a UHPLC system with 
a UPLC BEH Amide column coupled with a TripleTOF 
6600 (Q-TOF, AB Sciex).

However, when considering only lipids, currently there 
are two complementary approaches in lipidomics by mass 
spectrometric analysis such as shotgun lipidomics (direct 
infusion) and the use of liquid chromatographic separa-
tions before analysis. Shotgun lipidomics facilitate the 
high-throughput global analysis of lipidome by exploiting 
the chemical and physical properties of lipids directly from 
the sample. In shotgun lipidomics, the mass spectrum 
discloses molecular ions of individual lipid species of in-
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terest allowing precursor-ion scans of the particular frag-
ment ions for their identification and quantitation. Each 
scan cycle establishes the identity of the molecular ion by 
recognizing the building blocks of each lipid class (Wang 
et al. 2016). In the present study, the shotgun approach of 
lipidomics has been utilized to identify and determine the 
relative abundance of major lipid species in mustard oils 
obtained from different related species.

Materials and methods
The study was conducted at the ICAR-Directorate of 
Rapeseed Mustard Research (DRMR) in Bharatpur, In-
dia, situated at coordinates 27°11'N, 77°27'E. The climate 
in this area is predominantly semi-arid, characterized by 
long hot summers, brief intermittent rainfall during the 
south-west monsoon, and a winter period lasting almost 
five months, with average temperatures dropping below 
22.5 °C. The winter season often aligns with one or two 
instances of rain attributed to western disturbances. The 
soils in the region are primarily deep, well-drained incep-
tisols with a texture ranging from coarse to fine loamy.

The crops were grown during 2015–16 season. N, P, 
and K at rates of 80:40:40 kg/ha, as well as sulphur at rates 
of 40 kg/ha, zinc sulphate at rates of 25 kg/ha, and borax at 
rates of 10 kg/ha was applied. Half of the nitrogen was ap-
plied as a basal dosage and the remaining half during the 
first irrigation at 30 to 45 days after sowing. Irrigation was 
given at pre-flowering and siliquae forming stages. After 
harvesting the seeds were stored at room temperature at 
the germplasm collection of Indian Council of Agricul-
tural Research (ICAR) - Directorate of Rapeseed-Mustard 
Research, Bharatpur situated in the semiarid regions of 
Rajasthan state of India. Oil extraction was done in Janu-
ary 2017 and it was stored at 4 °C in 3 ml glass vials with 
lids till the MS analysis was done within a week.

Mustard species and chemicals

Seven different cultivated species of Brassica seed oil 
including Brassica juncea (RH-749), Brassica rapa var. 
Yellow sarson (NRC-YS-05-2), Brassica rapa var. Toria 
(PT-30), Brassica rapa var. Brown sarson (DRMR-388), 
Brassica napus (GSL-1), Brassica carinata (PC-5) and 
Eruca sativa (DRMR-171) were chosen for the study.

n-Hexane (95 %), methanol, dichloromethane (DCM), 
ammonium acetate buffer (purchased from SRL pvt ltd, 
India).

Extraction of oil

1 g of seeds was crushed using pestle and mortar and 
placed in extraction thimbles. Extraction was carried out 
in a Soxhlet apparatus (macro scientific) for 4 hours at 
70 °C using n-hexane (Sisco Research Lab) (95 %). The sol-

vent was evaporated using a rotary evaporator (Heidolph). 
The oil thus obtained was stored at 4 °C till it was taken 
out for analysis. The oil recovery ranged from 35 to 42 %.

Sample preparation prior to analysis

The crude oil obtained by Soxhlet extraction process was 
diluted 10-fold with methanol: dichloromethane (DCM) 
(Sisco Research Lab) (50:50 V/V) followed by second 
dilution of 10-fold in 10 mM ammonium acetate (Sig-
ma Aldrich) in methanol. Finally, 5 µl diluted oil was 
dissolved in 5 ml of dichloromethane: methanol (40:60) 
solvent mixture along with ammonium acetate buffer 
and analyzed on a High-Resolution Quadrupole Time of 
Flight-Mass Spectrometry (QToF-MS).

LC method and mass spectrometry acquisition 
parameters

50 µl of each sample were analyzed in replicate injection 
(n = 6) using Flow Injection Analysis (FIA) by Shimadzu 
Prominence autosampler (Shimadzu Corporation Kyoto, 
Japan) and isocratic pump. Isocratic mobile phase as 98 % 
methanol with 2 % water (5 mM ammonium acetate) was 
used to push sample to the source at a flow rate of 10 µl/
min. Nebulizing gases GS1 and GS2 were kept at 20 psi 
and 15 psi, respectively. Curtain gas was set at 15 psi, pos-
itive mode ion spray voltages at 5500 V, negative mode ion 
spray voltages at 4500 V, declustering potential at 40V and 
ESI source temperature was operated at 300 °C. The meth-
od has been reproduced later by Raza et al. (2021).

MS/MSALL with flow injection analysis (FIA) 
coupled with triple TOF mass spectrometry

Triple TOF system was calibrated for MS and MS/MS in 
both positive and negative mode using the standard cali-
bration reagent before acquiring each sample for mass ac-
curacy and resolution. Diluted mustard oil lipid extracts 
were introduced by direct infusion using Shimadzu 20AD 
chromatography system (Shimadzu Corporation Kyoto, 
Japan). A previously reported method (Denke 2006) was 
followed for instrument setting. The Q1 quadrupole was 
set to step 1 Da increments across the mass range for se-
lecting lipid precursors at unit resolution. For complete 
Collision Induced Dissociation (CID) fragmentation, the 
isolated precursor ions were passed through the collision 
cell. A high resolution ToF-MS scan was also included in 
the cycle for high mass accuracy. In the current study MS/
MSALL with FIA workflow on the Triple-TOF 6600 (AB 
Sciex, Concord Canada) system was activated by MS/
MSALL mode tool in the AnalystTF ® 1.7 software.

The masses isolated in Q1 were derived from those that 
had appropriate mass defects set for both positive and 
negative ion modes. Finally, a TOF-MS scan ranging from 
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200–1500 m/z with accumulated time for 250 ms followed 
by acquisition of ~1000 product ion spectra from Q1 mass 
200 to 1200 m/z stepping by 1 Da was included. MS/MS 
spectra were acquired from 100–2000 m/z accumulated 
for 100 ms each and the total cycle time for the experiment 
was set at 1.8 min each for positive and negative polarity.

Lipid species identification using LipidView™ 
software

Data processing was done using LipidView™ 1.32 Software 
(AB Sciex, Concord Canada) which process high resolu-
tion TOF-MS and MS/MS data in the Infusion MS/MSALL 
workflow in both polarities. De-isotoping correction was 
applied for high resolution which provides more accurate 
response for the identified lipid species. Peak intensities or 
peak area measurements was then corrected or normal-
ized. Lipid view 1.2 software was used for viewing the pre-
cursor masses of all fragment ions that make up the lipid 
species. Results of positive and negative modes of infusion 
MS/MSALL workflow were compared among oils from sev-
en different rapeseed-mustard species.

Principal component analysis

After lipid identification and relative quantitation, sta-
tistical multivariate analysis was done to understand the 
relative difference between lipids. MarkerviewTM Software 
was used to import the output of LipidviewTM software to 
visualize trends in lipid expression across seven different 
cultivated species of Brassica seed oil using principal com-
ponent analysis (PCA).

Results and discussion
Lipid profile as detected in negative ion mode

A total of 70 lipid species belonging to different classes were 
detected in the negative ion mode. The percentage of vari-
ability explained by first two principal components is 34.1 
%. In the Fig. 1a, samples 1, 2, 3, 4, 5, 6 and 7 represent B. 
juncea, yellow sarson, toria, brown sarson, B. napus, B. car-
inata and Eruca sativa respectively hereafter in this report. 
It shows the variation in the levels of these compounds 
among these species. When PC1 and PC2 were plotted 

Figure 1. a. PCA analysis showing the similarity among different species based on their lipid profile as detected 
in negative ion mode. b. Volcano plot representing MS data showing statistical significance and fold change for 
compounds detected in negative ion mode. Compounds on the right-hand side are over expressed and the ones on 
left-hand side are downregulated. CL: Cardiolipin, OAHFA: (O-acyl) ω-Hydroxy Fatty Acid, PIP: Phosphatidylinosi-
tolphosphate, NAPE: N-acylphosphatidylethanolamine, FFA: Free Fatty Acid, PC: Phosphatidylcholine, CDPDAG: 
Cytidine diphosphate diacylglycerol, PE: Phosphatidylethanolamine.
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against each other, B. juncea and toria showed consider-
able similarity in their spectrum (Fig. 1a). Yellow sarson, 
Brown sarson and Eruca sativa also appears to be similar 
in terms of MS spectrum. The volcano plot representing 
the MS data (Fig. 1b) showed the statistical significance 
and fold change. Points appearing away from the centre 
have large magnitude of fold change and those points hav-
ing low p-value (<0.05) are statistically significant. Com-
pounds satisfying these two conditions can be considered 
as differentially expressed among the seven species.

Fig. 2 shows the response of individual compounds 
such as CL 58:8 (FA 18:0), CL 62:8 (FA 20:0), CL 60:3 (FA 
19:0), CL 56:7 (FA 16:0), Phosphatidylinositolphosphate 
(PIP) 3 34:1 (FA 16:1) and PE 36:3 (FA 16:2) that are pres-
ent in higher levels (right side of the volcano plot) in each 
species. It also shows that in brown sarson and toria these 
individual compounds expressed a higher response com-
pared to other species.

Free fatty acids

Edible oils with low saturated fatty acids are preferred as 
they are reported to cause increase in blood cholesterol 
levels proportional to the length of their carbon chains 
(Denke 2006). Monounsaturated fatty acids (MUFA) 
have been attributed with influencing blood lipids, blood 
pressure, insulin sensitivity and anti-obesity properties 
(Gillingham et al. 2011). In the present study, 8 species 
of FFAs were found to be in significantly higher levels in-
cluding palmitic, stearic, oleic, linoleic, arachidic, Eicos-
anoic, behenic and erucic acids while linolenic acid was 
not detected (Fig. 3). Erucic acid was the most abundant 
FFA and showed exceptionally high levels in yellow and 
brown sarson species compared to others. This is followed 
by Palmitic and stearic acids which shows that saturated 
FFAs are more abundant in these oils compared to unsatu-
rated FFAs. Linoleic acid was present in free form only 
in yellow and brown sarson species. Free eicosanoic acid 
was present only in yellow sarson and Eruca sativa while it 
was almost absent in other species. It is worthwhile to note 

that yellow sarson oil contain the highest levels of almost 
all FFAs compared to others.

Genotypes of B. napus that are low in erucic acid (<2 %) 
are known as canola (Ali et al. 2009). The major fatty ac-
ids reported in canola oil are Palmitic acid (C16:0), stearic 
acid (C18:0), cis-vaccenic acid (C18:1), oleic acid (C18:1), 
octadecanoic acid (C18:1), eicosanoic acid (C20:1), doco-
sanoic acid (C20:1) and erucic acid (C22:1) (Schwender 
et al. 2015). It is known to contain low levels of saturated 
fatty acids (5–7 %) and high levels of polyunsaturated fatty 
acids (PUFA) with 7–10 % linolenic acid (ω-3) and 17–21 
% linoleic acid (ω-6) (Pellet et al. 2008; El-Beltagi and Mo-
hamed 2010). Teh and Birch (2013) analyzed canola oil 
by gas chromatography (GC) to find oleic acid to be the 
predominant fatty acid (57 %). Similar observations were 
made by El-Beltagi and Mohammed (2010) in B. napus 
by GC-MS. They have reported oleic acid to range from 
56.31–58.67 % while erucic acid content between 0.15–
0.91% qualifying them as canola type. However, not all B. 
napus varieties are low in erucic acid. 1H NMR study also 
shows B. napus to contain erucic acid content between 0 
to 42 % and with increase in erucic content oleic acid level 
would decrease. In our study, there was considerable vari-
ation among the species as yellow sarson and B. juncea 
had higher levels of saturated FFA contrary to previous 
reports (Han et al. 2016).

Previous studies on various important oil crops have 
revealed distinct fatty acid profiles. Jokic et al. (2013) re-
ported that soybean oil is primarily composed of linoleic 
acid (55.968%), with low levels of erucic acid (0.592%). 
Considerable level of lignoceric acid was also detected. In 
the case of Algerian peanuts, Giuffre et al. (2016) found 
that oleic acid dominates the fatty acid profile at 50.94%, 
with minimal levels of linolenic acid (0.19%) and palmi-
toleic acid (0.04%). Sunflower oil, as characterized by Rosa 
et al. (2009), is distinguished by high linoleic acid content 
(69.62%), the absence of myristic acid, and low levels of 
linolenic acid (0.02%). In the fatty acid profile of toma-
to seed oil, Giuffre et al. (2017) identified the presence of 
margaric acid (0.11%), palmitoleic acid (0.45%), and gink-
golic acid (0.39%). Notably, among these oils, erucic acid 

Figure 2. Response of individual compounds detected in negative ion mode that are upregulated (right-hand side of 
the volcano plot).
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was only detected in soybean oil, similar to its presence in 
mustard oil. Brassica seed oils, in contrast, lack detrimen-
tal saturated fatty acids such as myristic, margaric, and 
lignoceric acids. Additionally, arachidic and behenic acids 
are present in minimal concentrations in the free fatty acid 
form (Fig. 3). Nevertheless, the elevated levels of erucic 
acid in the composition could be deemed a disadvantage.

Eicosanoic acid levels have been reported to be 1.27 and 
2.91 % for rapeseed and mustard oil respectively (Vyviurska 
et al. 2015). Higher levels of eicosanoic acid have been re-
ported for mustard oil (6.89 %) and rapeseed oil (9.3 %) in 
other studies (Abul-Fadl et al. 2011). However we did not 
observe high erucic varieties to have high levels of eicosano-
ic acid as it has been described in a previous report (Richter 
et al. 2010). No correlation was observed between eicosa-
noic and erucic acid levels. Linolenic acid (ω-3) which is an 
important PUFA essential for brain development and car-
diovascular diseases, usually found in a range of 6–14 % was 
not detected as FFA in any of the oils. In the GSL-1 variety of 
B. napus which we have analyzed, stearic acid was the most 
abundant FFA followed by palmitic and erucic acid. Since 
it is not canola type, it is expected to have high erucic acid 
and low oleic acid content. Exceptionally high level of erucic 
acid was observed in yellow sarson and brown sarson. FFA 
and total fatty acid content would be different and would 
have no correlation with each other. And also there are no 
reports showing yellow sarson to be so high in erucic acid 
content compared to other species. The PCA analysis reveals 
that B. juncea, B. napus and B. carinata have much similar-
ity in their MS spectrum. FFA 22:1, FFA 20:0 and FFA 16:0 
are showing significant variation and differential expression. 
Fig. 4a, b shows that FFA 16:0 (palmitic acid), FFA 16:1 (pal-
mitoleic acid) and FFA 14:0 (myristic acid) were upregulat-
ed and their response was highest in B. juncea.

Cardiolipins

Cardiolipins are phospholipids present exclusively in the 
inner mitochondrial membranes where they are essential 
for regulating various kinds of mitochondrial proteins 
such as electron transport complexes, carrier proteins 
and phosphate kinases (Nakagawa 2013). They have four 
fatty acyl moieties that determine their diversity and are 
susceptible to peroxidation and contribute to membrane 
fluidity (Van Klompenburg et al. 1997).

Cardiolipins (CLs) play a crucial role in the respirato-
ry chain, and variations in their fatty acid composition 
have been linked to various disorders, such as pulmonary 
hypertension, heart failure (Saini-Chohan et al. 2011), 
acute myocardial ischemia and reperfusion (Petrosillo et 
al. 2003) and diabetes mellitus (Han et al. 2007). Higher 
levels of circulating linoleic acid (LA) and muscle-derived 
tetralinoleoyl-cardiolipin (LA4CL) have been associat-
ed with a reduced risk of cardiometabolic diseases. LA-
rich oil fortification has been shown to increase LA4CL, 
contributing to a lowered risk of such diseases (Cole et 
al. 2022). Although the role of CL and its metabolism in 
plants is not well understood, measuring CL in plants pos-
es challenges due to its low abundance and the presence 
of interfering compounds like galactolipids, neutral lipids, 
and pigments. To overcome these challenges, solid-phase 
extraction via anion exchange chromatography was em-
ployed by Zhou et al. (2016) to purify CL from crude plant 
lipid extracts. They employed LC/MS analysis to reveal 
the content and molecular species composition of CL in 
various plant species, including Arabidopsis, mung bean, 
spinach, barley, and tobacco.

In our study, out of 26 different species of cardiolipins 
detected in negative ion mode, CL 56:1 (FA 18:1) and CL 

Figure 3. Variation in response of free fatty acids among different species based on their lipid profile as detected in 
negative ion mode.
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56:1 (FA 22:1) were present only in brown sarson. Similar-
ly, CL 56:2 (FA 18:2) and CL 56:1 (FA 22:1) were present 
only in Yellow and Brown sarson. Rest of the cardiolipins 
was detected only in B. napus oil. CL 60:7 (FA 16:0) and 
CL 62:9 (FA 20:0) signals were obtained in B. carinata. CL 
60:1 (FA 22:1) and CL 62:8 (FA 18:1) were absent in all 
other species.

N-Acyl phosphatidylethanolamines (NAPEs)

N-acylphosphatidylethanolamines (NAPEs) are nitrogen 
containing lipids belonging to glycerophospholipid class. 
NAPEs amount to 2–3 % of total phospholipid content in 
plants (Chapman et al. 1999). Diversity in NAPEs is due 
to the variation in length and number of double bonds in 
the acyl chains (Kilaru et al. 2012). N-acylethanolamines 
(NAEs) formed by hydrolysis of NAPEs have role in seed 
germination and seed establishment. Both NAPEs and 
NAEs have been detected more in desiccated seeds and 
their levels go down post germination indicating their role 
in plants (Chapman 2004). NAPEs are also known to have 
membrane stabilizing properties in both plants and ani-
mals. However, the main function of NAPE is as the pre-
cursor of NAEs which carries out lipid mediated functions 
in cells (Coulon et al. 2012). De Luca et al. (2019) utilized 
LC-HRMS to evaluate the levels of N-acylphosphatidy-
lethanolamines (NAPEs), N-acylethanolamines (NAEs), 
and endocannabinoids (ECs) in 43 food products. They 
simulated daily intakes based on Mediterranean, vege-

tarian, and Western diets. The results revealed that plant-
based foods exhibited higher abundance of NAPEs and 
NAEs compared to animal food products. Alves et al. 
(2021) employed ESI-MS and MS/MS spectra through a 
Q-ToF mass spectrometer in positive ion mode and/or 
a linear ion-trap mass spectrometer in both positive and 
negative ion modes. The MS spectra showcased molecular 
ions corresponding to lipid classes in olive seeds. NAPEs 
were identified in the negative ion mode as [M-H]- ions.

Data from the present study reveals four different forms 
of NAPEs including NAPE 52:1 (FA 22:1), NAPE 54:12 
(FA 18:1), NAPE 56:12 (FA 22:1) and NAPE 58:12 (FA 
22:1) in different samples. All four forms of NAPEs were 
present in yellow sarson while only NAPE 56:12 (FA 22:1) 
was present in brown sarson. Other Brassica species did 
not show presence of any of these NAPEs. Yellow sarson 
variety seems to be peculiar as it contains all four forms of 
NAPEs. Although, the specific functions of these NAPEs 
are not known, yellow sarson variety can be considered as 
distinct due to this property.

(O-acyl) ω-Hydroxy fatty acids (OAHFAs)

(O-acyl) ω-hydroxy fatty acids (OAHFAs) are polar li-
pids found in meibomian gland secretions in animals. 
Earlier OAHFAs have been reported in canines, rabbits, 
mice and humans (Butovich et al. 2012). OAHFAs func-
tion as a surfactant in the tear film lipid layer (Schuett 
and Millar 2013).

Figure 4. a. Volcano plot representing MS data showing statistical significance and fold change for different fatty 
acids detected in negative ion mode. b. Response of different fatty acids that are upregulated (right-hand side of 
the volcano plot). OAHFA: (O-acyl) ω-Hydroxy Fatty Acid, FFA: Free Fatty Acid.
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Wheat varieties with different wax content were selected 
to comparatively analyze their waxy components using ul-
tra performance liquid chromatography tandem mass spec-
trometry (UPLC-MS/MS) by Zheng et al. (2021). Through 
lipidomic analysis, 1287 lipid molecules were identified by 
them representing 31 lipid subclasses including OAHFA 
lipids. In our study, OAHFA 16:0/ 18:1 (16:0 FA), OAH-
FA 18:0/ 18:2 (FA 18:2), OAHFA 18:0/ 22:1 (FA 22:1) and 
OAHFA 18:0/ 18:1 (FA 18:1, 18:1 FA) were the four differ-
ent forms of OAHFA detected (Suppl. material 1). All four 
forms were present in yellow sarson while OAHFA 16:0/ 
18:1 (16:0 FA) was absent in brown sarson. None of the 
other species gave any MS signals for these compounds. 
According to the volcano plot, (Suppl. material 2) the com-
pounds OAHFA 18:1/22:1 (FA 22:1), OAHFA 18:0/22:1 
(FA 22:1), OAHFA 18:0/18:2 (18:0 FA), OAHFA 18:1/20:1 
(FA 20:1) etc. were downregulated. Yet again, yellow sar-
son variety appears to be distinct in having all four forms of 
OAHFA making it nutritionally important. Since OAHFA 
has been rarely reported in plants, it is necessary to con-
firm their presence in rapeseed oil using suitable standards 
which we could not do due to unavailability of standards.

Phospholipids

Phospholipids are major constituents of biological mem-
branes and are responsible for maintaining membrane 
integrity and cell homeostasis (Taguchi et al. 2005). Phos-
pholipids are involved in cell growth and differentiation 
(Skwarek and Boulianne 2009). The main group of phos-
pholipids is the glycerophospholipids that includes phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylinositol (PI) and phosphatidylserine (PS). 
PIs also function as metabolic precursor for polyphos-
phoinositides that has role in signal transduction and 
cell cycle progression besides being an integral part of 
cell membranes (Horn and Chapman 2014). PSs contain 
amino groups and have antibiotic synergism with vit-E 
(Totani 1997). PIPs are phosphorylated forms of PIs that 
are collectively called as phosphoinositides and have roles 
in lipid signaling, cell signaling and membrane traffick-
ing (Gillooly et al. 2001). In this study, MS response for 7 
phosphatidylcholines (PC), 3 phosphatidylethanolamines 
(PE), 11 phosphatidyinositols (PI), 1 phosphatidylinosi-
tolphosphate (PIP), 3 phosphatidylinositol triphosphate 
(PIP 3), 1 phosphatidylserine (PS) and 1 cytidine di-
phosphate diacylglycerol (CDPDAG) were recorded. PC 
36:2+AcO (FA 18:1) was the most abundant phospholip-
id and B. napus had the highest level. PI 34:2 (FA 16:0) 
and PI 34:2 (FA 18:2) were also present in high amount 
in brown sarson. CDPDAG 40:3 (FA 22:1) was detected 
only in B. napus oil. As we know that CDPDAGs are lipo-
nucleotides that are present in extremely small amounts 
in tissues (<0.05 % of total phospholipids) and hence very 
rarely reported. It is a precursor for many other phospho-
lipids (Qi et al. 2016). PS 40:6 was detected only in brown 
sarson. Almost all forms of phospholipids were detected 

only in B. napus species while they were absent in others. 
Since B. napus is having almost all forms of phospholipids, 
they stand out as nutritionally important.

Lipid profile as detected in positive ion mode

In positive ion mode, a total of 1098 lipid species were 
detected including digalactosyldiacylglycerols (DGDG), 
sphingolipids, monoalkyldiacylglycerols (MADAG), 
N-acyl phosphatidylethanolamine (NAPEs) and phos-
phatidylcholines (PC). A total of 165 DGDGs, 474 tria-
cylglycerols (TAG), 12 phosphatidylcholines, 315 NAPEs, 
45 MADAGs, 1 MGDG and 86 different species of sphin-
golipids were detected. According to PCA results (Suppl. 
material 3), yellow sarson, toria and brown sarson have 
much similarity in their spectrum. B. napus and Eruca sa-
tiva also appears to have similarity in their components. 
However, B. juncea and B. carinata stands out to be unique. 
The percentage of variability explained by first two princi-
pal components is 63.8 %. However, maximum variability 
according to the volcano plot (Suppl. material 4) was ob-
served in sphingolipid species such as GT2 42:3:2, GM3 
26:2:2, GT3 44:3:4, GT3 46:1:2 that were upregulated. 
Considerable variation is also seen in the response of in-
dividual compounds among different species. At the same 
time, compounds like GTI 26:0:3, GTI 30:0:3, GDI 42:1:2, 
GDI 42:1:2 etc. were downregulated and their response 
was most prominent in yellow sarson (Suppl. material 3).

Sphingolipids

Sphingolipids (SLs) have a sphingoid base backbone, 
composed of sphingosine (So), sphinganine (Sa), or 4-hy-
droxysphinganine (phytosphingosine). Ceramide (Cer) is 
formed when a fatty acid (FA) is attached to carbon-2 (C-
2) on these backbones via an amide bond. Subsequently, 
complex SLs are produced by attaching hydrophilic head 
groups to the OH-group at C-1 (Futerman and Riezman 
2005). The distribution and quantity of dietary SLs vary 
widely across different foods, with low content in fruits and 
vegetables and high content in dairy products and soybeans 
(Vesper et al. 1999). Dietary SLs can promote the elimina-
tion of pathogenic organisms and toxins from the intestine 
(Duan and Nilsson 2009), influence viral receptors (Uter-
mohlen et al. 2008), regulate cell fate determination, cancer 
initiation, progression, and drug sensitivity (Newton et al. 
2015), play a role in multiple signaling pathways governing 
neuronal development (Piccinini et al. 2010), help in skin 
hydration (Lee et al. 2015), contribute to adipose tissue 
function and treating obesity (Le Barz et al. 2020).

Ines et al. (2018) had quantified the total sphingolipids 
by the analysis of their released long-chain bases (LCB) us-
ing reverse-phase HPLC. Hu et al. (2021) established and 
applied an ultrahigh-performance liquid chromatography 
coupled with electrospray ionization quadrupole time-of-
flight mass spectrometry method for a comprehensive lipid-
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omic profiling of oilseeds. Their study identified and quanti-
fied 15 sphingomyelins along with other major lipid species.

The study identified a total of 86 different forms of 
sphingolipids. These included 6 GD1, 4 GM3, 32 GT1, 25 
GT2, 4 GT3, 10 Hex3Cer, and 4 MIPC types. Separate PCA 
and volcano plots were generated for the sphingolipids. 
Significant variations were observed in GD1 42:1;2 (LCB 
18:0;2-2H2O) and GT3 44:1;4 (LCB 18:0;2-2H2O). Each 
species exhibited distinct distributions of sphingolipids.

Phosphatidylcholines (PC)

Phosphatidylcholines constitute a major group that has 
structural and functional role in cell membranes. It also 
has pharmaceutical applications in treatment of neurolog-
ical and liver diseases (Reddy et al. 2005). Up on study-
ing the effect of PC and PE concentration on the oxida-
tion rate of stripped peanut oil (SPO) and bulk peanut 
oil (BPO) with Electron paramagnetic resonance (EPR), 
it was found that PC and PE decelerated BPO oxidation 
(Zhao et al. 2020). On the contrary increasing PC con-
centrations (50–1000 ppm) had substantial reductions in 
antioxidant efficacy (AE) of Trolox. The effectiveness of 
both α-tocopherol and trolox decreased significantly in 
the presence of PC. (Velasco et al. 2023).

Thin layer chromatography (TLC) has been employed 
by Yang et al. (2020) to purify PCs from six different beans, 
followed by their identification through ultra-high-per-
formance liquid chromatography–Quadrupole (Q)–
high-resolution mass spectrometry (UHPLC-Q-HRMS). 
The findings revealed that chickpea (Cicer arietinum) 
and soybean (Glycine max) exhibited PC contents of 50.0 
and 34.0 mg/g, respectively, which is higher than the lev-
els observed in the other beans. Zitouni et al. (2016) had 
utilized nanospray ionization quadrupole time-of-flight 
mass spectrometry to analyze glycerophospholipid classes 
and molecular species in the seed oils of two halophytes, 
Cakile maritima and Eryngium maritimum. Phosphatidyl-
choline emerged as the predominant glycerophospholipid 
in both oils, with phosphatidylethanolamine and phos-
phatidic acid being less abundant. Quantitative variations 
were observed in the main molecular species (C36:4, 
C36:3, C36:2, 34:2, and C34:1) among the different glycer-
ophospholipids and between the two halophytes.

PC 48:0 (LPC) was the most abundant phosphatidylcho-
line detected in this study followed by PC 48:1 and PC 48:2. 

Eruca sativa showed highest level of PC 48:0 (LPC) followed 
by B. napus. PC 44:1 was detected only in B. napus and Eru-
ca sativa oils. PC 45:6 was detected only in Eruca sativa and 
PC 48:4 was present only in B. juncea and B. carinata.

Conclusions
Major fatty acids, phospholipids, sphingolipids and stor-
age lipids could be identified and their relative abundance 
was compared among the species. As ESI source is known 
to work best for detecting polar lipids, some of the non 
polar lipids may have been undetected. Hence, it is neces-
sary to perform MS analysis again using an APCI source. 
Almost all forms of cardiolipins were present in B. napus 
while most of them were absent in other species. Saturated 
FFAs were lowest in B. carinata. Important phospholipids 
such as cardiolipins and NAPEs and their relative abun-
dance among the different species could be understood. 
OAHFAs which have been reported only in animal sys-
tem have been detected in Brassica seed oil which needs 
further confirmation. As high levels of saturated FFAs are 
not desirable, B. carinata can be considered beneficial 
due to their low levels. Yellow sarson variety contains all 
four forms of NAPEs and all four forms of OAHFA. Yel-
low along with brown sarson were having highest levels 
of erucic acid in the form of FFA. These properties make 
them nutritionally important. Also, since B. napus is hav-
ing almost all forms of phospholipids and cardiolipins, it 
stands out as nutritionally important.
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