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Abstract
Chitosan is a biocompatible, biodegradable, and antimicrobial polymer. Researchers have recently explored using chi-
tosan nanoparticles to fight phytopathogenic fungi. This review aims to provide a comprehensive overview of studies 
conducted between 2013 and 2023 using the most popular databases for academic research on this topic. A systematic 
review was conducted using Software Rayyan to support the process. The search was conducted using the Web of Sci-
ence, Scopus, and ScienceDirect databases. Out of the 752 records found from 2013–2023, only 83 articles were consid-
ered eligible for inclusion in the review after screening with inclusion and exclusion criteria. Most studies showed that 
chitosan nanoparticles are produced using sodium tripolyphosphate (TPP) through ionotropic gelation. However, using 
TPP has potential drawbacks and may have a synergistic effect with chitosan, which requires further investigation. TPP 
can affect the biological activity of the nanoparticle matrix. Furthermore, less than 10 out of the 83 articles reviewed in 
the time frame explored chitosan-only nanoparticles (nanochitosan) against phytopathogenic fungi. This shows the need 
for more research to determine the potential benefits of chitosan-only nanoparticles in control phytopathogenic fungi.
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Introduction

The biocompatibility, biodegradability, and antimicrobi-
al activity of chitosan have led to its evaluation in various 
formulations for use in agriculture, food production, and 
crop protection against pathogens. For the year 2023, 9,767 
papers were retrieved from the Web of Science Core Collec-
tion using your search engine, showing the extensive body 
of research attesting to the many advantages of these poly-
mers across several domains (Table 1). Nanotechnology is a 
relatively new scientific field (Haris et al. 2023) that focuses 

on reducing the particle size of materials to the nanoscale 
of 1–100 nm while also enhancing their biological activity 
(Ansari 2023; Malik et al. 2023). It is essential to note that in 
polymeric systems, the definition of nanoparticle generally 
extends up to 1000 nm size (Jonassen et al. 2012; Zielińs-
ka et al. 2020; Lang et al. 2021). Current scholarly progress 
includes the development of novel agricultural goods that 
shield plants from pathogens (Ansari 2023), as well as the 
creation of complex nanoparticles based on chitosan and 
nanochitosan (chitosan-only nanoparticles) because the 
nanoscale increases inhibition against fungi pathogens 
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(Kheiri et al. 2016; El-Mohamedy et al. 2019). Howev-
er, there is knowledge to be generated; for example, when 
changing the search for chitosan to nanochitosan and chi-
tosan nanoparticles, 246 articles were found during the past 
decade (only 24 in 2023) according to the Web of Science 
search engine. Based on the 17 goals of the United Nations’ 
Sustainable Development 2030 Agenda, the number of ag-
riculture-related articles was reduced (see Table 2). There is 
a significant potential to assess the benefits and drawbacks 
of applying nanochitosan in crop protection. This litera-
ture analysis aimed to provide a comprehensive overview 
of studies conducted between 2013 and 2023 to assess the 
existing understanding of nanochitosan in phytopathogenic 
fungi, particularly to find research on nanoparticles com-
posed exclusively of chitosan.

Methods
To be considered for inclusion in this review, papers had 
to have been retrieved from the databases ScienceDirect, 
Web of Science, and Scopus. A search approach combines 
the keywords “chitosan nanoparticles”, “nanochitosan”, 
“fungi”, and “fungal”. The Boolean operators “OR” and 

“AND” were used for a more precise search with the fol-
lowing nomenclature: [chitosan nanoparticles OR nano-
chitosan] AND [fungi OR fungal]. Then, the results were 
filtered. First, the duplicate articles were removed. Later, 
records were excluded based on specific selection criteria 
with information in the titles and abstract. The criteria for 
inclusion were: (1) only research papers; reviews and chap-
ters were excluded; (2) Articles had to have been published 
between 2013 and 2023; (3) Articles had to be written in 
the English language. Also, exclusion criteria encompassed 
research or models devoid of fungus and studies includ-
ing yeast. The management of articles was supported by 
Software Rayyan (Free Plan) (Ouzzani et al. 2016). Other 
references were included to supply further explanations or 
to present varying viewpoints on particular subjects.

Results and discussion
Fig. 1 illustrates the number of papers that evaluated the 
efficacy of chitosan nanoparticles against phytopathogen-
ic fungi. These publications were disseminated through 

Table 1. Results from the Web Science search engine 
with entry information on chitosan with filter year 2023.

Document Type Record Count % of 9,767
Article 8,449 86.51
Review Article 1,210 12.39
Early Access 1,070 10.95
Correction 43 0.44
Meeting Abstract 32 0.33
Book Chapters 12 0.12
Proceeding Paper 12 0.12
Editorial Material 10 0.10
Letter 8 0.08
Retraction 6 0.06
Expression Of Concern 1 0.01

Data from the Web of Science. The search was performed at 9:45 AM 
(Pacific Time) on 12/14/2023.

Table 2. Results of articles related to some Sustainable 
Development Goals and closely linked to agriculture 
from the Web Science search engine using the keywords 
nanochitosan and chitosan nanoparticles (2013–2023).

Sustainable Development Goals Record 
Count

% of 
246

closely linked 
to agriculture

03 Good Health and Well Being 78 31.71
06 Clean Water and Sanitation 48 19.51
11 Sustainable Cities and 
Communities

41 16.67

14 Life Below Water 7 2.85
02 Zero Hunger 5 2.03 

13 Climate Action 2 0.81
12 Responsible Consumption and 
Production

1 0.41 

15 Life on Land 1 0.4 1 

Data from the Web of Science. The search was performed at 9:40 AM 
(Pacific Time) from 12/14/2023.

Figure 1. Flow diagram with results of articles used in the review.
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the Web of Science, Scopus, and ScienceDirect databases 
from 2013 to 2023. Of the 83 studies reviewed, 47 (56%) 
used sodium tripolyphosphate (TPP) to create chitosan 
nanoparticles. The ionotropic gelation method (IG) was 
the most used. The resulting particle sizes were mainly 
less than 400 nm, as reported in Tables 3, 4. Additionally, 
29 out of the 47 studies (more than 50%) that used TPP 
examined the nanoparticles for potential use as carriers 
of other molecules or substances to enhance the effective-
ness of chitosan.

Compounds such as metals, fungicides, essential oils, 
and vegetable extracts (mostly alcoholic) are examples of 
molecules or substances for carriers or mixed with chi-
tosan-TPP (Table 4). The most described method for pre-
paring chitosan nanoparticles in the literature is the TPP 
method, which is simple and easy to use (Bugnicourt and 
Ladavière 2016). This review shows that this tendency 
persisted until 2023. Sometimes, the word TPP is left out 
from the title or abstract of certain articles. This can give 
the impression that the discussed nanoparticles are made 
solely of chitosan. However, upon closer examination of 
the method used to create the nanoparticles, it becomes 
clear that IG or some other method involving TPP is used.

Chitosan-TPP and nanochitosan

The omission of TPP in the titles and abstracts maybe be-
cause it is the most used compound for producing chitosan 
nanoparticles and is considered safe. However, Hsissou et 
al. (2021) describe a composite material as “the assembly 
of two or more materials, the final assembly having proper-
ties superior to the properties of each of the constituent ma-
terials.” Also, Zweben (2024) defines composite as “two or 
more materials bonded together, have revolutionary prop-
erties compared to traditional monolithic materials,” and 
Fakirov (2015) explains, “Polymer–polymer composites are 
then such composites whose reinforcement and matrix be-
long to two chemically different materials.” To distinguish it 
from nanoparticles made from chitosan alone, it is impor-
tant to name the matrix chitosan-TPP as a nanocomposite 
rather than nanochitosan. The word nanochitosan should 
be used for particles made with chitosan-only. Although 
chitosan is the primary component in chitosan-TPP, and 
it could be argued that its biological activity is solely due to 
chitosan, it is still possible that there is a synergistic effect 
between chitosan and TPP. Koukaras et al. (2012) have re-
ported that chitosan-TPP contains mostly chitosan, but it 
is essential to recognize the potential contribution of TPP 
to the overall biological activity of the nanocomposite.

TPP synergistic effect

Sodium tripolyphosphate (Na5P3O10) (TPP) is a crystal-
line inorganic salt anionic that belongs to the group of 
condensed phosphates and is used mainly for the indus-
try of detergents (Makara et al. 2016). Also, it is widely 

used in the IG method to cross-link polycationic poly-
mers, and the elaboration of chitosan nanoparticles is not 
the exception for being considered physiologically non-
toxic (Rampino et al. 2013; Dmour and Taha 2018). The 
nanoparticles of chitosan-TPP are a consequence of the 
ionic interaction between amino groups (-NH+ 3) of chi-
tosan and phosphate groups of TPP (-P3O

-5
10) and particle 

formed contend phosphorus in the structure (Antoniou et 
al. 2015; Sarkar et al. 2022). It is possible that some authors 
do not use TPP controls due to its low content compared 
to chitosan and the limited activity of TPP because of ion-
ic interactions with chitosan (Rampino et al. 2013).

Mondéjar-López et al. (2022) show that chitosan-TPP 
nanoparticles do not impede the germination of wheat, 
barley, and oats seeds, and the potential exists for chi-
tosan-TPP-fungicide nanoparticles to mitigate the phyto-
toxic impact of pure fungicides on plants, although in cer-
tain circumstances (Maluin et al. 2020). On the contrary, 
the study conducted by Asgari-Targhi et al. (2018) reveals 
that the growth and development of Capsicum annuum 
were significantly inhibited by chitosan-TPP nanoparti-
cles (5, 10, and 20 mg L-1). Wang et al. (2021) found that 
the impact of TPP varied, with positive or negative effects 
contingent upon the plant organ; specifically, the authors 
reported that TPP promoted leaf development while im-
peding stem growth. On the other hand, Chouhan et al. 
(2022) report that kidney cells were altered from a concen-
tration of 0.3 mg/mL chitosan-TPP nanoparticles to give a 
negative response and cause reproductive inability. Divya 
et al. (2018) reported on the cytotoxicity activity of fibro-
blast cells. They measured the percentage of viable cells 
and percent cytotoxicity. After 24 hours of incubation, 
300 mg/mL killed 74.16% of the cells, obtaining an LD50 
value of 64.21 mg/mL. Moreover, few researchers, such as 
Xiong et al. (2023) and Cota-Arriola et al. (2013), have 
evaluated or discussed this possible synergistic biological 
activity between chitosan and TPP. Earlier reports have 
shown that TPP has antifungal activity against fungi phy-
topathogens (Knabel et al. 1991; Cota-Arriola et al. 2013; 
Jakovljevic et al. 2014). These reports suggest that the ef-
fects of chitosan-TPP nanoparticles could be governed by 
a synergistic, which can have a positive or negative impact 
depending on the interacting organism of the nanoparti-
cle. Further studies are needed to determine the full range 
of potential disadvantages of chitosan-TPP nanoparticles 
against fungal phytopathogens.

The effects of the TPP component after the breakdown 
of chitosan-TPP nanoparticles are unclear. This review 
cannot answer concerns about residual TPP accumula-
tion and its potential impact on non-target organisms. 
Previously, Palmeira-de-Oliveira et al. (2011) report-
ed that the overall in vitro activity of TPP has not been 
investigated. However, several studies have shown that 
the environmental problem known as eutrophication 
and changes in proteases and protein fungal activity can 
be generated with the used TPP (Stojanović et al. 2010; 
Stojanović et al. 2011; Jakovljević et al. 2020). To avoid 
these negative effects, it is recommended to seek alter-
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Table 3. List of research studies conducted between 2013 and 2023 that evaluated the efficacy of Chitosan-TPP 
nanoparticles against phytopathogenic fungi.

# Reference Fungal Crop
Characteristic nanoparticle

Major findings for this review
Size (nm) Potential Z (mV)

1 El-Mohamedy et 
al. (2019)

Alternaria solani Tomato 40–70 48 Concentrations 0.1% and 0.05% showed
Botryties cinerea Potato completely inhibited (100%) the mycelial 

growth of all tested pathogensFusarium oxysporium Green bean
Fusarium sembaticum
Fusarium solani
Macrophomina phaseolin
Phytophthora infestance
Rhizoctonia solani
Sclerotina. Sclerotiorum
Sclerotium rolfsii

2 Sarkar et al. (2022) Alternaria alternata Capsicum 
annuum L.

<100 --- 100% inhibition to 0.1%

3 Izadi et al. (2021) Tomato 150 32 Antifungal activity
4 Sen et al. (2022) Aspergillus flavus Mung bean 

[Vigna radiata 
(L.) R. Wilczek]

~260 100 Inhibition spore germination

5 Singh et al. (2020a) --- 40–100 41 Low effects antifungal
6 Elshaer et al. 

(2022)
Aspergillus niger --- 216–263 ---- MIC:256.0 µg/mL

MFC: 512.0 µg/mL
7 Hasheminejad et 

al. (2019)
--- 129.83 31 Inhibition up 50% to 187 µg/mL

8 Melo et al. (2020) Strawberry 331 34 Inhibition <50% in fruit infected
Inhibition >60% in fruit infected

Botrytis cinerea Inhibition <50% in fruit infected
Rhizopus stolonifer

9 López-Meneses et 
al. (2018)

Aspergillus parasiticus Corn grain 361.9 43.8 Lower inhibition

10 Mondéjar-López et 
al. (2022)

Aspergillus niger Wheat 172 49.8 MIC: 1.11 µg/mL
Aspergillus versicolor 
Fusarium oxysporum

Oat MIC: >3.33 µg/mL
Barley MIC: 3.33 µg/mL

On spore germinated
11 Abdel-Aliem et al. 

(2019)
Aspergillus niger Nut 180 --- Mycelium Inhibition >60%
Aspergillus terreus 800 ppm inhibits Zearalenone production
Baeuvaria bassiana
Fusarium oxysporum 
Fusarium graminearum

12 Alotaibi et al. 
(2019)

Aspergillus flavus Phoenix 
dactylifera

35–65 --- Inhibition of growth fungi evaluated
Aspergillus ochraceus
Fusarium moniliforme

13 Hesami et al. 
(2021)

Botrytis cinerea Strawberries 187 39 lowest inhibition against fruit decay to 
20/µg mL

14 Mohammadi et al. 
(2015)

96.93 53 1500 ppm for inhibition up 50%

15 OH et al. (2019) Colletotrichum gelosporidies, 
Phytophthora capsica

Tomato ~100–
1000

--- Antifungal activity

Sclerotinia sclerotiorum
Fusarium oxysporum
Gibberella fujikuori

16 Divya et al. (2018) Tomato 20–70 --- Inhibited Mycelial radial growth:
Divya et al. (2017) Fusarium oxysporum Chilly 63.88% at 40 mg/mL

Rhizoctonia solani Brinjal 84.72% at 50 mg/mL
Colletotrichum acutatum 76.72% at 50 mg/mL
Phytophthora infestans 32.16% at 50 mg/mL

17 El-Morsy et al. 
(2023)

Fusarium equiseti Tomato 60 90.7 Inhibition rate for isolates: 40.39–66.0%

18 Kheiri et al. (2016) Fusarium graminearum Wheat 180.9 45.6 85% inhibition to 5000 ppm
19 Kheiri et al. (2017)
20 Karamchandani et 

al. (2022)
---- 256 24.5

Fusarium moniliforme 144 46.5 0.20% for inhibition fungal growth, up 80%
21 Muzzalupo et al. 

(2020)
Fusarium proliferatum Allium sativa 260 25 Fungal inhibition up to 48.71%
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# Reference Fungal Crop
Characteristic nanoparticle

Major findings for this review
Size (nm) Potential Z (mV)

22 Chouhan et al. 
(2022)

Fusarium solani Wheat 21–124 --- 65.50% of radial growth inhibition and 
89% inhibition of spore germination to 

40 µg/mL
23 Dananjaya et al. 

(2017)
Fusarium oxysporum --- 275 36 MIC: 400 µg/mL

24 Boruah and Dutta 
(2021)

--- 310–342 -15.36 Chitosan from fungal chitin
Sclerotium rolfsii Maximum Radial growth inhibition:
Rhizoctonia solani Fusarium oxysporum, 60.14%

Sclerotium rolfsii, 45.03%
Rhizoctonia solani, 63.2%

25 Hoang et al. (2022) Lasiodiplodia 
pseudotheobromae

Citrus 50–250 98.7 200 ppm exhibited the highest activity in 
totally inhibiting

Alternaria alternate
Penicillium digitatum

26 Salem et al. (2022) Penicillium digitatum Citrus fruit 22.18–
159.73

38.8 MFC for isolates 32.5–35 mg/mL

27 Xing et al. (2021) Penicillium steckii --- --- --- MIC: 5 mg/mL MFC: >5 mg/mL
Aspergillus oryzae MIC: >5 mg/mL MFC: >5 mg/mL

28 Manikandan 
and Sathiyabama 
(2016)

Pyricularia grisea Rice 83.32 -28 Not show direct inhibitory activity against 
fungi

29 Pham et al. (2019) Pyricularia oryzae Rice 25–30 -3 Lowest antifungal activity
30 Divya et al. (2020) Rhizoctonia solani Oryza sativa L --- --- 1000 µg/mL uppress 90% disease in 

detached leaf assay

---: not applicable or not reported. MFC: Minimal fungicide concentration MIC: Minimal inhibitory concentration.

Table 4. List of research studies (from 2013 to 2023) that evaluate Chitosan-TPP nanoparticles as carriers or com-
posites of other molecules or substances against phytopathogenic fungi.

# Reference Fungal Crop

Molecules or 
substances 

added to matrix 
nanoparticles

Characteristic 
nanoparticle

Major findings for this review
Size (nm) Potential 

Z (mV)
1 Izadi et al. (2021) Alternaria alternata Tomato Carum copticum EO 190.6 +29.4 Antifungal activity
2 Saharan et al. (2013) --- Copper 180–487 +88 High inhibition fungi

Macrophomina phaseolina 
Rhizoctonia solani

Saponins 200–990 +31

3 Saharan et al. (2015) Alternaria Solani 
Fusarium oxysporum

Tomato Copper 374.3 +22.6 mV  0.12% caused 70.5 and 73.5% 
inhibition of mycelia growth and 

61.5 and 83.0% inhibition of spore 
germination in Alternaria solani and 
Fusarium oxysporum, respectively.

4 Karami-Osboo et al. 
(2023)

Aspergillus flavus Pistachio 
nut

 Zataria multiflora 
(Boiss) EO

293 ± 17 +16.8 inhibiting aflatoxin B1 production

5 Mumtaz et al. (2022) ---- Voriconazole NA NA Antifungal activity

6 Singh et al. (2020a) --- Bunium persicum 
(Boiss) EO

80–300 +33.8 Inhibition of 100% growth and 
aflatoxin B1 production to 0.8 µg/ml

7 Tiwari et al. (2022) --- Cinnamomum 
glaucescens EO

45.8–
104.8

---  MIC = 0.9 µL/mL aflatoxin 
inhibition to 0.8 µL/mL

8 Dwivedy et al. 
(2018)

Pistacia 
vera

Illicium verum EO <200 --- Inhibiting aflatoxin B1 at 0.2 μL/mL

9 Das et al. (2021) ---- Pimpinella anisum 
EO

21–38 --- MIC: 0.08 μL/mL and inhibition 
antiaflaxotinB1

Curvularia lunata 
Alternaria humicola 
Alternaria alternata

Nanoencapsulation preserved the 
antifungal properties for a longer 

time
10 Elshaer et al. (2022) Aspergillus niger --- Thompson Seedless 

Vitis vinifera juice 
extract Clotrimazole 
Thompson Seedless 
Vitis vinifera juice 

extract/Clotrimazole

59–124 --- MIC:128 µg/mL MFC: 256 µg/mL

67–75 --- MIC:32 µg/mL MFC: 64 µg/mL

50–89 +31 MIC:2 µg/mL MFC: 2 µg/mL
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# Reference Fungal Crop

Molecules or 
substances 

added to matrix 
nanoparticles

Characteristic 
nanoparticle

Major findings for this review
Size (nm) Potential 

Z (mV)
11 Hasheminejad et al. 

(2019)
--- Clove EO 268 +22 Inhibition mycelial

12 El-Aziz et al. (2018) Aspergillus niger --- Mentha longifolia 
extract

157 ≈+36 Antifungal activity

13 Mondéjar-López et 
al. (2022)

Wheat Garlic EO 172–352 +19–32 MIC: 0.37 µg/mLAspergillus versicolor 
Fusarium oxysporum Oat MIC: 3.33 µg/mL

Barley MIC: 1.11 µg/mL
On spore germination

14 Nasiri-Jahrodi et al. 
(2022)

Aspergillus fumigatus --- Eugenol 300–330 --- MIC: 300 µg/mL MFC: 600 µg/mL
increase the expression of CYP51 

gen
15 López-Meneses et al. 

(2018)
Aspergillus parasiticus Corn grain Schinus molle L. EO 516.9 +40.2 500 μg/mL inhibited up to 59% the 

aflatoxin production
16 Mohammadi et al. 

(2015)
Botrytis cinerea Strawberry Zataria multiflora EO 124.67–

174.03
+46.6–67.8 750 ppm for inhibition 100%

17 Youssef et at. (2019) Table 
grapes

Silica 48 --- 100% inhibition to 10000 µg/mL

18 Hesami et al. (2021) Strawberry Pistacia atlantica EO 215.3–
632.5

+10.46–
34.11

Hight inhibition against fruit decay 
to 20 µg/mL

19 Wu et al. (2023) Colletotrichum 
gloeosporioides

Strawberry O-carboxymethyl 
chitosan/

tebuconazole

NA NA Antifungal activity

20 Chouhan et al. 
(2022)

Fusarium solani Wheat Niquel 300–400 100% of inhibition on spore 
germination and radial growth to 

40 µg/mL
21 Dananjaya et al. 

(2017)
Fusarium oxysporum --- Silver 373 ± 28 +47.5 MIC: 100 µg/mL

22 Kumar et al. (2022a) Fusarium pallidoroseum --- Mancozeb 292.4–
443.9

+14.8–17.8 Antifungal activity

23 Muzzalupo et al. 
(2020)

Fusarium proliferatum Allium 
sativa

In vitro Olive Leaf 
Extracts

254.6 16.9 Inhibition fungal up to 67.41%

24 Salem et al. (2022) Penicillium digitatum Citrus fruit Punica granatum peel 
extract- selenite

24.58–
164.71

+ 31.7 MFC for isolates 22.5–27.5 mg/mL

25 Pham et al. (2019) Pyricularia oryzae Rice Protocatechuic acid 30–35 +11 Stronger anti-fungal properties at 
5000 ppm

26 Sathiyabama and 
Muthukumar (2020)

Pyricularia grisea Rice guar gum NA NA Activity against blight disease of rice

27 Jose et al. (2022) Pythium aphanidermatum --- clove oil NA NA Antifungal activity
28 Sathiyabama et al. 

(2022)
Rhizoctonia bataticola Chickpea Thiamine NA NA Antifungal activity

29 Mazzotta et al. 
(2022)

Verticillium dahliae Tomato Olive leaves extracts 331.26 21.1 MIC: 0.14 mg/mL

---: not applicable or not reported. NA: Full text is unavailable, only by subscription or buy article. EO: Essential oil. MFC: Minimal concentration fungicide.

natives to TPP that do not introduce compounds to the 
chitosan polymer matrix. Alternatively, safe compounds 
whose effects on the environment and non-target biolog-
ical systems have been fully tested can be used. More re-
search is required to determine the biological activity of 
chitosan-TPP and TPP.

Chitosan-only nanoparticles (nanochitosan)

This review exclusively focuses on nanoparticles made up of 
chitosan, but only twenty-six articles have studied nanoparti-
cles without reporting the use of TPP in a composite matrix. 
The compounds mixed with chitosan are copper (Hassan et 
al. 2022; Dorjee et al. 2023), gold (Lipșa et al. 2020; Lipșa et 
al. 2021), nickel (Parthasarathy et al. 2023), silver (Matei et 

al. 2018; Gordienko et al. 2019), zinc (Alharbi et al. 2022), 
pinene (Hernández-López et al. 2020), proteins (Sathiya-
bama and Parthasarathy 2016; Hernández-Téllez et al. 2017), 
sodium sulfate (in place of TPP; Hashim et al. 2019), prop-
olis (Cortés-Higareda et al. 2019), oil (Wardana et al. 2023), 
essentials oils (Luque-Alcaraz et al. 2016; Chávez-Magdale-
no et al. 2018; Kalagatur et al. 2018; Yadav et al. 2019; Yilmaz 
et al. 2019; Kumar et al. 2020, 2022b; Singh et al. 2020b; Das 
et al. 2022), and vegetable extracts (Ali et al. 2022; El-Naggar 
et al. 2022; Istúriz‐Zapata et al. 2022).

Only a few articles in this research have evaluated 
nanochitosan, which refers to nanoparticles made of chi-
tosan-only. Some of these studies used nanochitosan as 
a control to compare the particle size of mixtures of chi-
tosan and other compounds without evaluating the anti-
fungal activity of nanochitosan itself (Kumar et al. 2019; 



Emir. J. Food Agric ⋅ Volume 36 ⋅ 2024 7

Emirates Journal of Food and Agriculture

Singh et al. 2020b). Abdelraouf et al. (2023) used nano-
chitosan with a size range of 80–100 nm as a control in 
their experiment. They found that reduced the percentage 
of Fusarium wilt infection in tomato plants without affect-
ing the growth of plants. In addition, Abdel-Rahman et al. 
(2021) reported that nanochitosan with a size of less than 
100 nm and at concentrations of 0.2 and 0.4 g/L, inhibited 
the growth of Penicillium expansum, which is a pathogen 
that affects apples. Istúriz‐Zapata et al. (2022) found that 
using nanochitosan (5 nm) up to a dosage of 100 μL/mL 
resulted in no growth of fungi in vitro, including Colle-
totrichum asianum, Fusarium solani, Lasiodiplodia theo-
bromae, Neofusicoccum oculatum, Pestalotiopsis mangif-
erae, and Talaromyces variabilis. Chávez-Magdaleno et al. 
(2018) reported that nanochitosan had preventive activity 
against Colletotrichum gloeosporioides in avocados, while 
Wardana et al. (2023) discovered that (43.77–70.61 nm) 
exhibited antifungal activity against Rhizopus stolonifer. 
Moreover, in a study conducted by Cortés-Higareda et al. 
(2019), it was found that nanochitosan (3 nm) showed a 
minor inhibition of up to 25% on spore germination and 
mycelial growth in some fungi such as Aspergillus fla-
vus. On the other hand, some reports have shown less or 
non-activity of nanochitosan against fungal pathogens. 
Luque-Alcaraz et al. (2016) discovered that nanochitosan 
(20–100 nm) did not significantly reduce the number of 
viable spores of Aspergillus parasiticus in vitro. This data 
suggests that the fungi may be lowly susceptible to nano-
chitosan. The above-described highlights the need to 
conduct more research to fully understand the benefits 
of nanochitosan in the combat against phytopathogenic 

fungi. Although nanoparticles have great potential to im-
prove human life, handling and managing them correctly 
is important to prevent any negative effects on biological 
systems, including nanotoxicology.

Conclusions
This review delved into the characteristics of chitosan na-
noparticles, both with and without TPP. However, only a 
limited number of studies investigated chitosan-only na-
noparticles. Thus, there is a critical need for further re-
search on nanochitosan to ensure their safe and effective 
use in biological systems, highlighting the significance of 
proper handling and precautionary measures.
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